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Stefan flow equations are derived for aqueous electrolyte solutions. Experimental 
results are presented. 

As is well known, the processes of mass transfer in vapor--gas mixtures in the pre~ence 
of semipermeable surfaces are complicated by a penetrating flow component supplementin~ the 
fixed flow; this component has been termed Stefan flow by investigators [i~3] . 

Significant interest has developed recently in transfer phenomena occurring in liquids 
flowing under analogous conditions. 

Such conditions are found universally in the processes of condensation or evaporation 
from solutions of acids, bases, or salts, and the approaches taken toward this problem have 
not always been valid. Thus, [4] considered liquid diffusion under conditions of semiper- 
meability, but Stefan flow was not considered. In [5], the limiting case of pure diffusion 
without convective phenomena was considered, with the minimum possible evaporation rate being 
achieved, as is confirmed in the present study. The experimental studies of [6] found an 
anomalously low concentration change during mass transfer in a porous medium saturated by an 
electrolyte. To clarify that anomaly, the study proposed a hypothesis of additional mass 
transfer by diffusion through gaseous inclusions in the matrix. Such a process can aczual!y 
occur during diffusion, but the investigators did not consider Stefan flow In the elec~ro- 
lyre. In [7], another transfer mechanism was considered in an electrolyte-porous matrix sys- 
tem. The effect of that mechanism reduces to the appearance in the matrix of a convec~ive 
Stefan flow due to the capillary pressure drop occurring upon evaporation. 

In calculating the operation of an electrical generating element, Tonkonogil introduced 
a convective term into the transfer equation and obtained a relationship which increasedby 
a factor of 5-10 times the effective coefficient of diffusion of water in a porous mat~:ix 
saturated by an electrolyte [8~ The author understood the term effective diffusion coeffi- 
cient as the ratio of flow, with consideration of Stefan flow, to the concentration gradient. 

In the above studies the question under discussion was put concretely, with reference 
to the operation of an electrical generating element, and in the convective phenomenon that 
was analyzed a general filtration of Stefan flow of the electrolyte developed because of the 
action of capillary forces. 

However, Ss flow is a basic property of semipermeability conditions, i.e., process 
conditions under which the phase boundary is impermeable to one of the solution components. 
Because of this generality, Stefan flow exists in liquid solutions having a free unbound 
state. 

Therefore, it is of importance to derive the Stefan equation for liquids. 

Derivation of the process equation will be performed under the following assumptions: 

i) Upon change in solution concentration the total solution volume remains equal to the 
sum of the component volumes; 

2) the solution temperature is constant; 

3) the diffusion coefficient is independent of concentration. 

We will assume a concentration range such that the liquids are mutually soluble. 
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It is easly shown that in a solution of two liquids, when assumptions i) and 2) are 
fulfilled, the concentration of one substance is linearly dependent on the concentration of 
the other. 

We will consider a certain volume filled by a solution of two liquids. Let Vt be the 
volume occupied in the solution by liquid I with a density T~ before mixing; (V -- Va) is the 
volume occupied by liquid 2 with density Y2 before mixing. The component concentrations in 
the solution will then be 

- -  = c , ;  - -  ~ = ~ 
V V 

From these two equations there follows the linear dependence 

Ci = ?i--~2, (i) 

where Ya and b = Yt/Y2 are constants. 

The applicability of Eq. (i) rests on the real relationship between the partial densi- 
ties of the solution components, which is shown in Fig. i. Of the six aqueous electrolyte 
solution characteristics shown in Fig. i, five have characteristics close to linear joining 
the endpoints of each of the curves. Nonlinearity appears especially strongly in the case 
of the sodium hydroxide solution. The effect of nonlinearity will be considered below. 

As follows from [9], a relationship quite close to Eq. (1) is valid in a significant 
number of cases. 

We will consider the case of evaporation from an aqueous solution of one electrolyte. 
We direct the x axis from the phase boundary into the depths of the solution. Component 2 
has a low vapor pressure and undergoes practically no evaporation, so that the phase bound- 
ary is impermeable for it. 

On the evaporation surface (x = 0) the concentration of the evaporating component is 
lower than in the depth of the solution. In view of Eq. (i), the concentration of component 
2 is higher at the solution surface than in the depth, so that, following the diffusion laws, 
component 2 should diffuse into the body and be liberated from the solution. However, the 
quantity of component 2 in the solution does not change. Under these conditions, with the 
Stefan assumption there should exist a general flow of the mixture in the direction of the 
penetrating component, compensating the diffusion flow of the nonevaporating component. 

Since the Fick diffusion law is completely applicable to a solution of a single elec- 
trolyte ~i0], we may write 

- - i t  =WCl + D t dc--'! (2)  
dx ' 

- - ]2  = wc2 + D dc~ = 0. (3)  
dx 

Considering Eqs. (2), (3), and (i), we obtain 

j~ = y~Ddc______~ (4)  
c2dx 

Integrating Eq. (4) between the limits x = 0 and x = s, we finally have 

h---- ?~D In c2--~-~ . (5)  
S C2s 

Equation (5) was obtained from the linear relationship between component concentrations 
in the solution. In an accurate description of the curve c~ = f(c2) for an aqueous solution 
of sodium hydroxide, the quantity b would be taken as a function of c2, i.e., ci =yx -- b(c2). 
cz, where b(c2) =--0.388c~ + 0.762c2--0.0622. The mass flow calculated with this exact curve 
differs from the mass flow using linear equation (I) for NaOH by not more than 10%. For the 
other solutions considered in Fig. I, the error in the flow due to nonlinearity does not ex- 
ceed 4%. 
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Fig. i. Actual relationships between component concen- 
trations in solution; ca) water concentration, g/cm ~; 
ca) solute concentration, g/cma; i) Na0H; 2) AgN0a; 3) 
NaBr; 4) KOH; 5) HCI; 6) KCI. 

We will write the Fick equation for the present case in integral form: 

D 
i ,  = - -  - -  (ci~ - -  C~o). ( 6 )  

s 

For one and the same values of cxs and cxo the ratio between the flow calculated ~ith 
Stefan equation (5) and the flow calculated by the Fick law (6) comprises 

h _ Yi In c2~ (7)  
iF cis--ci~ C2~ 

Using Eq. (i) to express c2 in terms of c~, we obtain 

= V--L, ( 8 )  

where m = I(y~ -- c~o) -- (y~ -- C~s)]/in[(y1 -- cxo)/(y~ -- Cls)] is the mean logarithmic dif- 
ference of the quantities (y: -- c~o) and (y~ -- Cxs); y: = 1 g/cm s is the density of water. 

It is evident from Eq. (8) that the ratio iS/iF drops sharply with decrease in the to- 
tal solvent content in the solution and that for high-concentration solutions it is close 
to unity. 

We will present the well-known Stefan equation for vapor condensation from a vapor--gas 
mixture; 

Jl -- DPmAx In P2o (9) 
RvTs P2~ 

Comparing Eq. (5) with Eq. (9), we see their identical form. In fact, in Eq. (9) the 
complex Pmix/Rv T is none other than a certain effective specific gravity of the pure vapor 
at temperature T and pressure Pmix- The ratio of partial pressures of the noncondenslng 
gas may be represented as the ratio of its partial pressures at the mixture temperature. 

Equation (5), like Eq. (9), contains a limitation on the magnitude of the component 
partial densities. The partial density of the nonevaporating material in Eq. (5) can be no 
larger than the value determined from the condition of solubility. In Eq. (9), the vapor 
density cannot exceed the value determined by the saturation temperature, equal to the mix- 
ture temperature. 

Considering Eqs. (3) and (4), we note that for a solution with a free state the dis- 
placement rate of the phase boundary upon evaporation or condensation is equal to the Stefan 
flow velocity in the liquid. 

We will clarifythis statement. 

We imagine a vessel, the bottom of which is a piston, containing an evaporating solu- 
tion. To maintain the phase boundary at a specified level, the piston must move at some 
velocity Wp. From Eq. (3), the Stefan flow velocity takes on the value (D/c2)(dca/dx). 
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Considering Eq. (4), we obtain 

]i = %w (i0) 

Not taking account of the differential expressions, it follows from elementary considera- 
tions that in the case with the piston j, = y,~p, i.e., the same as Eq. (I0), inasmuch as j, 
and y, are one and the same. 

In a special case the role of the piston may be fulfilled by capillary forces. If the 
piston is immobile, the phase boundary will descend with the same velocity w. 

Under conditions of semipermeability, the density of the mass flow in a vapor--gas medi- 
um willhave the same external form as Eq. (I0), since with unchanging barometric pressure 
and constant temperature the vapoz'-gas mixture, down to the saturation point, obeys Eq. (i) 
much more exactlythan liquids do: 

l~ = Yv~ (n )  
In the processes under consideration we have neither mass sources nor sinks. For one and 
the same mass-transfer process between electrolyte and vapor--gas mixture, Eq. (Ii) may be 
set equal to Eq. (i0). As a result, 

~i (12) Wg ~ W, 

i.e., in evaporation from a solution or condensation on its surface the Stefan flow rate in 
the vapor-gas mixture is as many times larger than the Stefan flow rate in the liquid as the 
effective density of the pure solvent is larger than the effective density of the vapor, de- 
termined by the pressure and temperature of the process. 

We will demonstrate the importance of considering Stefan flow in liquids in solution 
of practical problems by presenting experimental results obtained with hydrated calcium ox- 
ide. 

The experimental apparatus for study of heat and mass transfer under conditions of semi- 
permeability (Fig. 2) consisted of three main components: the body 2 and sleeves 5 and 9. 
Channels were milled in the sleeves for the heat-transfer agent 4 (KOH) and the distillate 
8. On the open end of the KOH channels porous metalloceramic elements 1 and 7, 63 mm in 
diameter, were attached. These served as the phase boundaries, and a vapor--gas space 3 was 
formed between them, through which mass transfer from the alkali solution to the distillate 
occurred. The upper sleeve was rigidly fixed to a shaft, held in a sliding bearing and mov- 
able in the body opening. The stem of dial indicator 6, type ICh-lO, was attached to the 
shaft to measure the size of the vapor--gas space. The accuracy of this measurement varied 
with scale position from 6 ~m at the bottom of the scale to 20 Bm at the top. To determine 
zero spacing, an electrical potential was applied across the porous elements so that a bulb 
lit up when they made contact. The temperature of the heat-transfer agent was measured by thermo- 
couples coated with OEP-41-71 epoxy resin. In the experiments, the heat-transfer agent was 
circulated through closed channels by special pumps. Flow rate was measured by RS-3 rotam- 
eters. Each channel was totally closed and communicated with the external atmosphere only 
through a measurement cylinder calibrated every 0.2 ml. Thus, the change in liquid level in 
the measurement cylinders was used to determine the water mass flow transferred from the al- 
kali to the distillate. The distillate-saturated porous element used was able to withstand 
the pressure head without loss of water seal, permitting vacuum charging of the system with 
the working agents. It should be noted that the porous elements were soaked in water after 
the system was evacuated of air. 

The porous element used in the experiment had a diffusion attenuation coefficient ~ = 5, 
and its thickness was 0.5 mm. The following parameterswere maintained in the experiments: 
ti~ = 80~ t in = 60~ Gel = Gca = 35 kg/h; and eel = ~ca = ii00 kcal/m2h'deg. The pres- 

e ~  �9 c a  sure of the vapor--gas mixture in the gap between the porous elements was maintained at a 
level of 1.3 kg/m a and measured by a reference manometer [GOST (All-Union State Standard) 
6521-60]. A KOH concentration of 20% by weight was maintained practically constant by the 
inclusion of additional volume in the circuit throuRh which the electrolyte was pumped. Sam- 
ples of liquid were taken for testing from the channels before and after the experiment. 

The density of the samples was determined by densimeters (GOST 1300-57). The entire ex- 
periment lasted 12 h. Over this time the KOH concentration in the alkali channel increased 
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Fig. 2. Experimental apparatus: i) porous 
element; 2) body; 3) gas--vapor space; 4) 
alkali channel; 5) movable sleeve; 6) dial 
indicator; 7) porous element; 8) distillate 
channel; 9) fixed sleeve. 
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Fig. 3o Solvent flow density Jz (g/cm2"h) versus size of vapor--gas space ~ (mm); sol- 
id line) experiment; dashed line) calculation, 

Fig. 4. Ratio of solvent flow with consideration of Stefan flow in electrolyte tc 
solvent flow calculated purely from Fick's law as a function of vapor--gas space size 
~, mm. 

by 1%. No alkali was detected 21 the water circuit, 

The experimental results are shown by the solid line of Fig. 3. In the experiments each 
value of vapor-gas space corresponded to a unique water flow and electrolyte concentration 
shift across the porous element. Flow values close to experimental were obtained by calcu- 
lation Cdashed curve of Fig. 3). To do this, the full system of heat- and mass-transfer 
equations describing the experimental process must be solved. In doing this the electrolyte 
diffusion process must be described by Eq. (5) with consideration of attenuation of the dif~ 
fusion coefficient. 

The ratio iS/iF for the existing experimental [i.e., those calculated with Eg. (5)] 
electrolyte concentration shifts in the porous element are shown in Fig. 4, 
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It follows from the figure that in electrolytes the solvent flow calculated with con- 
sideration of Stefan flow may be 18-20 times larger than the solvent flow calculated solely 
by the Fick equation. 

Thus, in processes of mass transfer between an electrolyte containing a component with 
a low vapor pressure and a vapor--gas medium, Stefan flow in the electrolyte is of significant 
importance and must be considered in practical calculations. 

NOTATION 

c, concentration of material in solution; j, solvent flow density; w, Stefan flow veloc- 
ity in liquid; D, coefficient of molecular diffusion; iS, solvent flow density with consid- 
eration of Stefan flow; iF, solvent flow density determined solely by Fick's law; Pmix, 
pressure of vapor--gas mixture; Rv, gas constant of water vapor; T, temperature of process; 
P, partial pressure; Wg, Stefan flow velocity in vapor--gas medium; Yv, effective specific 
gravity of water vapor, Yv = Pmix/RV T; ~' heat-transfer coefficient; G, heating-agent flow 
rate; ~, thickness of vapor--gas space. Indices: i) movable component; 2) fixed component; O) 
on phase houndary; s) at distance s from phase boundary; el) electrolyte; ca) cooling agent; 
in) at input of evaporator or condenser. 
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